UHG
Search
Close this search box.

Real Struggles of Bringing Robots from Simulation to Reality 

Simulated training may be one of the methods, but not necessarily the best suited.

Share

Real Struggles of Bringing Robots from Simulation to Reality

“Robots need to be able to deal with uncertainty if they’re going to be useful to us in the future. They need to be able to deal with unexpected situations and that’s sort of the goal of a general purpose or multi-purpose robot, and that’s just hard,” said Robert Playter, CEO of Boston Dynamics, in an interview with Lex Fridman last year. 

Playter couldn’t have been more real in describing the difficulty in robotics. Boston Dynamics, which began developing general purpose robots in the early 2000s, introduced its humanoid Atlas only in 2013. Apart from struggling for investments in robotics, training robots is always a challenge. 

Simulation for Robots

Simulated training is the most commonly adopted technique to equip general purpose robots for the real world. This is where virtual environments are created to develop, test and refine algorithms for robots to mimic real-world conditions. 

“Simulation works very well for certain aspects. They work well in simulation for tasks like walking and doing backflips, where you need to balance your robot. And that is the only way,” said Mankaran Singh, founder of Flow Drive, which makes autonomous vehicle capabilities. 

However, for tasks that can be learned through imitation such as folding shirts, it does not require a simulated environment. 

Simulation is Not the Only Way

CynLr Robotics, a Bengaluru-based deep-tech company that is building robotic arms, believes simulation is not the only way to train its robots. “There are so many layers of perception and fundamental intuition using perception that are still missing. These are capabilities that we should focus on to be able to make them more autonomous,” said Gokul NA, founder of CynLr.  

Meanwhile, NVIDIA’s Isaac Sim that is powered by Omniverse, is a robotic simulation platform that provides a virtual environment for AI-based robots to design, test, and train. 

“We do leverage those [Omniverse] technologies as a tool, but you can’t say a tool is the solution,” said Gokul. The limitations come into the picture when you bring these robots into the real world. 

“When you bring from a simulated assumption to reality, it doesn’t work. It doesn’t work at all, because it has never learned that. It has learned something else independently. Your mistakes are what it has learned, what you have left out,” he said. 

He attributes this gap to machines lacking the cognitive layers that aid in understanding objects and environments that can lead to discrepancies between what is seen and what is understood. 

Imitation learning is another common method for training robots where a user can demonstrate a task. However, it also comes with its limitations. For instance, if a user tries to train a robot to pick a white-coloured mug, the robot will fail to pick mugs of other colours.  

Arm and Humanoid Robots 

Similarly the form factor of general purpose robots also has a huge role to play in training them. For instance, robotics arm manufacturing requires a lot of manipulation, something that most companies overlook. 

Gokul believes that today’s robotics developments, especially robotic arms, are more of ‘record and playback machines’ with sophisticated manipulation, however, they lack in perception. “Most cases where you want to commercially deploy these robots, you don’t need legs. Wheels are more than enough, but you need more capability with the hands,” said Gokul, hinting at the current humanoids that are being developed.

2024 being the year of robotics, many players such as Figure AI, Tesla, UniTree, and Aptronix are focusing on building humanoid robots, while Google DeepMind and other research institutes are training and developing arm-based robots to execute multiple functions. 

AutoRT, SARA-RT and RT-Trajectory are a few robotics research systems Google DeepMind released. Stanford University introduced Mobile ALOHA, a system designed to replicate bimanual mobile manipulation tasks necessitating full body control – cooking being the main task demonstrated. 

NVIDIA: The Robot-Enabler

In addition to Omniverse, GPU giant NVIDIA is aggressively investing in robotics and recently unveiled GR00T, a general-purpose foundation model for humanoid robots. Robots powered by GR00T are engineered to understand natural language and mimic human movements by observing action. 

“Building foundation models for general humanoid robots is one of the most exciting problems to solve in AI today,” said NVIDIA chief Jensen Huang, at GTC 2024. 

NVIDIA is even building a comprehensive AI platform for all the leading humanoid robot companies, including OpenAI-backer 1X Technologies, Agility Robotics, Boston Dynamics, Figure AI, Unitree Robotics and many more. 

Not just NVIDIA, other players are also enabling the robot training ecosystem. OpenAI-backed Physical Intelligence which recently raised $70M in funding, is an emerging startup working towards bringing general-purpose AI into the physical world.

📣 Want to advertise in AIM? Book here

Picture of Vandana Nair

Vandana Nair

As a rare blend of engineering, MBA, and journalism degree, Vandana Nair brings a unique combination of technical know-how, business acumen, and storytelling skills to the table. Her insatiable curiosity for all things startups, businesses, and AI technologies ensures that there's always a fresh and insightful perspective to her reporting.
Related Posts
19th - 23rd Aug 2024
Generative AI Crash Course for Non-Techies
Upcoming Large format Conference
Sep 25-27, 2024 | 📍 Bangalore, India
Download the easiest way to
stay informed

Subscribe to The Belamy: Our Weekly Newsletter

Biggest AI stories, delivered to your inbox every week.

Flagship Events

Rising 2024 | DE&I in Tech Summit
April 4 and 5, 2024 | 📍 Hilton Convention Center, Manyata Tech Park, Bangalore
Data Engineering Summit 2024
May 30 and 31, 2024 | 📍 Bangalore, India
MachineCon USA 2024
26 July 2024 | 583 Park Avenue, New York
MachineCon GCC Summit 2024
June 28 2024 | 📍Bangalore, India
Cypher USA 2024
Nov 21-22 2024 | 📍Santa Clara Convention Center, California, USA
Cypher India 2024
September 25-27, 2024 | 📍Bangalore, India
discord-icon
AI Forum for India
Our Discord Community for AI Ecosystem, In collaboration with NVIDIA.